为此,在ManTech研究计划的激光冲击强化分研究计划下,LSPT公司开发了耐用的预生产型的激光冲击系统。LSPT公司开发并验证了由喷涂专用不透明涂覆层、覆盖水膜、发射激光脉冲和去除与清洁下一次要处理的表面4个步骤构成的RapidCoaterTM系统,使费用减少30%~40%,处理效率提高4~6倍,并将其集成到激光强化系统中;开发了监控快速涂敷系统在零件表面涂敷涂层质量的控制器与监控器,以确保可靠且一致的性能;研制了减少激光束光点重叠的由圆形光点转变为矩形光点的专门光学装置;研制了与涂敷工艺同步、与激光控制系统联接、指示控制光束形状的光学装置发出矩形光点的控制系统;建造了包括新的激光控制器、激光监控器、半自动强化间、激光系统的2个经济可承受的激光冲击强化间。这大大提高了工艺可靠性,降低了工艺成本,改善了激光束能量、时间分布和空间分布。
随着技术的不断进展,激光冲击强化又被推广应用到配装F-16A/B战斗机的F110-GE-100 发动机、配装F-16C/D 的F110-GE-129 发动机、正在研制的JSF120 发动机、配装F-15战斗机的F100-PW-220 发动机、配装波音777 客机的Trent800 发动机、配装波音787的TRENT1000发动机的风扇/压气机叶片上。这一技术使FOD容限提高15倍,检验的工时与费用大大减少,飞行安全明显改善。据报道,应用于F110-GE-100和F110-GE-129 发动机,为空军每年节省了上百万美元的维护费用,并且估计避免了较多的致命性的发动机故障。到2002年,已经节省了5900万美元。预计,在美国空军机队的寿命期内可节省10亿美元。美国金属表面工程公司(MIC)公司将激光冲击强化技术用于军民用喷气发动机叶片以延长其疲劳寿命,不但提高了飞机发动机的安全可靠性,而且每月可节约几百万美元的飞机保养费用、节约几百万美元的零件更换费用。
2 在压气机整体叶盘转子上的应用与发展
在配装F-22战斗机的F119发动机的工程管理研制中,PW公司发现第4级高压压气机整体叶盘转子存在抗外来物损伤容限裕度明显不足的问题。要想满足F-22 战斗机的性能要求,F119发动机第4级高压压气机整体叶盘转子的门限值应力强度因子需要提高3倍。如果进行重新设计,估计需要1000万美元以上的费用,并且需要较长的时间。这不但增加F119发动机的研制费用,更严重的是影响了F-22 战斗机的研制进度。为此,PW公司决定尝试采用激光冲击强化技术处理这一费用昂贵且结构复杂的整体叶盘转子,以提高其抗外来物损伤容限的裕度。
由于激光冲击强化技术最初是针对处理单个叶片开发的,这就需要实现由处理单个叶片扩展到处理复杂结构的整体叶盘转子的转变。首先,LSPT公司与PW公司一起确定新的工艺参数,疲劳试验与生产质量保证程序;开发适用于整体叶盘处理的透明的和不透明的涂覆层。2003年3月,LSPT公司采用人工涂覆不透明涂覆层的方法,开始对F119发动机的第4级高压压气机整体叶盘进行激光冲击强化处理。同年,美国空军和PW 公司为F-22战斗机建立了价值2亿美元的激光冲击强化生产线。由于在LSPT公司的自动RapidCoaterTM涂层涂敷机投入使用前要采用胶带法完成定型试验,最初的生产还是采用胶带涂覆法。到2005年2月底,LSPT公司已经向PW公司交付了经过激光冲击强化的96个F119发动机的第4级高压压气机整体叶盘。经过激光冲击处理后,有微裂纹与疲劳强度不够的受损伤叶片的疲劳强度为413.7MPa,完全满足379MPa的设计要求。经过激光冲击处理的叶片楔形根部的微动疲劳寿命至少延长25倍以上。