3、世界上首台白光激光器问世
自上世纪60年代问世以来,激光已在多个领域"大显身手",但它一直有一个短板,就是只能发出单一波长的光。现在,美国科学家解决了这个问题,他们首次研制出了一款能发白光的激光器。研究人员表示,白光激光器比发光二极管(LED)更亮且能效更高,未来将在照明和无线通讯领域发挥重要作用。
由美国亚利桑那州立大学电子、计算机和能源工程学院的宁存政(音译)领导的团队研制出一种新奇的纳米薄片。这块纤细半导体的大小仅为头发丝的五分之一,厚度仅为头发丝厚度的千分之一,其拥有三个平行的部分,每部分能发出红、蓝、绿三原色中的一种颜色的激光。整个设备能发射所有可见光的激光,从红色到绿色再到蓝色,或两者之间的任何颜色,当三原色"相遇"时,就出现了白色的激光。
最新研究让激光替代LED成为主流光源向前进了一步。激光更亮、能效更高且能提供更精确和生动鲜艳的显示颜色,可用于计算机和电视屏幕上。研究人员也证实,他们的新型设备能发出比目前的显示器工业标准多70%的颜色。
4、欧盟科学家实现量子点激光器新突破
从2013开始,SEQUOIA项目一直在开发具有较好的热稳定性、高调制带宽以及可能产生平面波分复用蜂窝的混合 III-V激光器。
通过使用硅衬底纳米结构异质集成材料,光学滤波器可以直接与异质量子点/量子簇/硅激光器集成制备出线性调频激光器。与直接调制激光器相比,该激光器有一个增强的调制带宽和消光比。作为该技术的一个例子,目的是开发一个总容量400Gbps发射机(16x25Gbps)。
在该项目的第一个阶段,量子点/量子簇材料质量有了明显的提高,卡塞尔大学最近展示了直接调制比特率达 34Gbps的量子点激光器,创造了新记录。同时,量子点晶片成功地结合到硅晶片上。
两种 PIC 最终示范产品也设计完成,分别是直接调制比特率达 25Gbps 的线性调频激光器和与级联环谐振器调节器集成为一体的光梳子雷射。这些PIC使用16波分复用信道便可提供 400Gbps的总容量,以更低的成本提供更好的性能,并通过采用新材料和新集成工艺增强器件性能。
该项目由 III-V 族实验室领导,该实验室在 InP 基光子学和硅基 III-V族混合集成方面有精湛的专业知识。另外两个德合作伙伴是总部位于多特蒙德的 innolume公司和卡塞尔大学内,这两个单位在材料和 III-V光电研究方面都创纪录成果。其他合作伙伴有法国电子与信息技术实验室;丹麦技术大学光子工程学院;法国雷恩大学福田实验室。
5、研究人员用猪皮造出激光器
哈佛大学的研究人员通过向脂肪细胞注入光,将它们变成微型自足的生物激光器。这项技术被一些科学家认为"非常酷"。研究人员选择猪的脂肪细胞是因为细胞内包含接近完美的脂肪球(即三酸甘油脂)。
论文主要作者尹贤锡(Seok Hyun Yun)称,他的长期目标是将细胞生物激光作为研究工具、传感器或在药物治疗中使用。除了猪脂肪细胞外,研究人员还发现了其它细胞可以转变成激光器。
研究小组多年来一直在探索以单细胞为基础的激光,希望在活组织内造出会发荧光的细胞,以便在这些细胞工作时跟踪它们,深入揭示身体内部机制,比如癌症是如何开始的。
以往他们所用的光学共振器都比细胞要大,而新研究所用的共振器非常小,能放在细胞内。科学家曾把水母细胞中的绿色荧光蛋白引入到人类细胞中,然后用共振腔增强发光。新研究是对这一研究的扩展。
研究人员诱导细胞"吞下"一种"回音廊式"的共振器,在细胞内部形成一个微小的泡泡--当用一束激光照射时,光会在泡泡内部反射而增强,共振器内的荧光染料就会发光。发出的光波长不同,其颜色取决于泡泡的大小和折射率,就像一个微小的植入式激光器。
通过这种技术处理可以修改大量细胞。由于细胞发光可以持续一个较长的周期(几天或几周),可以在较长时间里识别和跟踪活组织内的细胞,有望为研究人员提供一种很有潜力的手段,执行细胞内传感,自适应成像,还可能真正看到肿瘤细胞的生长过程。
6、中科院获得高频激光技术突破
由中国科学院物理研究所李志远教授带领的一个研究小组报告称,他们已经将能够发射高频激光的精密装置缩小至一块晶体大小。