亮度
过去几十年的创新带来了激动人心的改进。特别是,亮度方面的改进非常出色。 1985年,当时最先进的高功率半导体激光器可以将105毫瓦的功率耦合到105微米的芯径光纤中。最先进的高功率半导体激光器现在可以产生超过250瓦、拥有单一波长的105微米光纤 - 每八年增长10倍。
摩尔构思“将更多元件固定在集成电路上”-随后,每个芯片晶体管的数量每7年增加10倍。巧合的是,高功率半导体激光器以类似的指数速率将更多的光子融入光纤(见图1)。
图1. 大功率半导体激光器亮度以及和摩尔定律比较
大功率半导体激光器亮度的改进促进了各种不可预见技术的发展。虽然这一趋势的延续还需要更多创新,但有理由相信半导体激光技术的创新还远未完成。人们所熟知的物理学可以通过持续的技术发展进一步提高半导体激光器的性能。
例如,相比当前的量子阱器件而言,量子点增益介质可以显著提高效率。慢轴亮度提供了另一个数量级的改进潜力。具有改进的散热和扩展匹配的新型包装材料将提供持续功耗调整和简化热管理所需的增强功能。这些关键发展将为未来几十年高功率半导体激光器的发展提供路线图。
二极管泵浦固态和光纤激光器
高功率半导体激光器的改进使下游激光器技术的发展成为可能;在下游激光器技术领域,半导体激光器被用于激发(泵浦)掺杂晶体(二极管泵浦固态激光器)或掺杂光纤(光纤激光器)。
虽然半导体激光器提供高效率,低成本的激光能源,但有其有两个关键限制:它们不储存能量、亮度也有限。基本上这两种激光器需要用于许多应用:其中一个用于将电转换成激光发射,另外一个则用来增强该激光发射的亮度。
二极管泵浦固体激光器。在二十世纪八十年代后期,用半导体激光器泵浦固体激光器的应用开始在商业应用中逐渐普及。二极管泵浦固体激光器(DPSSL)极大地缩小了热管理系统(主要是循环冷却器)的尺寸和复杂性,并且获得了历来结合了弧光灯用于泵浦固态激光晶体的模块。
半导体激光器波长的选择是基于它们与固态激光增益介质的光谱吸收特性的重叠来进行的;与弧光灯的宽带发射光谱相比,极大地降低了热负荷。由于1064nm钕基激光器的普及,20多年以来,808nm泵浦波长成为半导体激光器中数量最大的波长。
随着多模半导体激光器亮度的提高以及在2000年中期能够用体布拉格光栅(VBGs)稳定窄发射线宽的能力,实现了第二代改进的二极管泵浦效率。880nm左右的较弱和光谱窄的吸收特征成为了高亮度泵浦二极管的研究热点,这些二极管能实现光谱稳定。这些更高性能的激光器能够直接激发钕中的激光上能级4F3 / 2,减少了量子缺陷,从而改善了平均功率更高的基模提取,否则将会受到热透镜的限制。
到2010年初,我们目睹了单横模1064nm激光器及相关系列频率转换激光器在可见光和紫外波段工作的大功率缩放趋势。由于Nd:YAG和Nd:YVO4较长的高能态寿命,这些DPSSL的Q开关操作提供了高脉冲能量和峰值功率,非常适合于烧蚀材料加工和高精度微加工应用。
光纤激光器。光纤激光器提供了一种转换高功率半导体激光器亮度的更加有效的方式。尽管波长复用光学器件可以将亮度相对较低的半导体激光器转换为较亮的半导体激光器,但这却是以增加光谱宽度和光学机械复杂度为代价的。光纤激光器已被证明在光度转换中特别有效。
在20世纪90年代引入的双包层光纤使用由多模包层环绕的单模光纤,可以将更高功率,更低成本的多模半导体泵浦激光器高效地投入光纤,从而创造出一种更经济的方式来将高功率半导体激光器到转换成更明亮的激光器。对于掺杂镱(Yb)的光纤而言,该泵浦激发了以915 nm为中心的宽吸收或976 nm左右的较窄带特征。随着泵浦波长接近光纤激光器的激射波长,所谓的量子缺陷就会减少,从而效率最大化,余热消散量最小化。
光纤激光器和二极管泵浦固体激光器都依赖于二极管激光亮度的改进。一般来说,随着二极管激光器亮度的不断改善,它们泵浦的激光器功率比例也越来越大。半导体激光器的亮度提升有利于促进更高效的亮度转换。
正如我们所期待的那样,空间和光谱亮度对未来的系统来说将是必要的,这将使固体激光器中具有窄吸收特征的低量子缺陷泵浦和直接半导体激光器应用的密集波长多路复用方案成为可能。