仅针对图4所分析工况可以看出:
(1)随激光功率的增加,打印熔池变宽且加长;
(2)随激光功率增加,熔池的熔深也增加,熔深的增加增大了上一层打印层(或基板)的重熔区,最终使得两层之间孔隙减少。
激光扫描速度的影响分析
本文在其他制备参数一致的条件下对比了不同激光扫描速度下熔池及单道熔覆层的形态,某工况下的对比结果见图5。
图5:激光扫描速度对熔池及单道熔覆层的影响,来源安世亚太
仅针对图5所分析工况可以看出:
(1)随激光扫描速度的增加,打印熔池变窄且加长;
(2)相应工况下随激光扫描速度的增加,熔池由连续逐渐变得不连续且出现明显的球化,球化的出现使得熔覆层表面变得不平整;
(3)随激光扫描速度的增加,熔池的熔深减小,熔深的减小使得上一层打印层(或基板)的重熔区变薄,最终使得两层之间孔隙增加。
铺粉层厚的影响分析
本文在其他制备参数一致的条件下对比了不同铺粉层厚下熔池及单道熔覆层的形态,某工况下的对比结果见图6。
图6:铺粉层厚对熔池及单道熔覆层的影响,来源安世亚太
仅针对图6所分析工况可以看出:
(1)随铺粉层厚的增加,打印熔池稍有变窄及加长;
(2)在相应工况下,随铺粉层厚的增加,熔池由连续逐渐变得不连续出现明显的球化,球化的出现使得熔覆层表面变得不平整;
(3)随铺粉层厚的增加,使得上一层打印层(或基板)的重熔区变薄,最终使得两层之间孔隙增加。
结论
总之,通过与物理实验相结合,仿真计算可以对激光选区熔化激光与粉末的相互作用,单道熔池内金属熔体的流动过程,相应工艺条件下熔池的形态及最终熔覆层的特性进行研究,可以深入理解SLM制备机理,并可对SLM打印机制备工艺设计和优化提供指导,缩短相应的研发和工艺优化流程。
(作者:谢琰军)